METASTABLE MODIFICATION OF $\operatorname{SrB}_2\operatorname{O}_4$

Osamu YAMAGUCHI, Muneaki KAMATA, and Kiyoshi SHIMIZU Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Karasuma-Imadegawa, Kamigyo-ku, Kyoto 602

During the course of heating the amorphous material prepared by the simultaneous hydrolysis of strontium methoxide and boron triethoxide, a new modification of ${\rm SrB_2O_4}$, being metastable, was formed.

Crystalline ${\rm SrB}_2{\rm O}_4$ has been known only in the orthorhombic modification. $^{1,2)}$ During the course of heating the amorphous material prepared by the simultaneous hydrolysis of strontium methoxide and boron triethoxide, a new modification of this compound, being metastable, was formed. On ${\rm SrSiO}_3$, a metastable modification similar to ${\rm SrB}_2{\rm O}_4$, which is shown in the present study, has been reported by Roy et al. $^{3)}$ as well as by the authors. $^{4,5)}$

Boron triethoxide used was the guaranteed purity one. Strontium methoxide was synthesized by heating 99.9% strontium metal in an excess amount of dehydrated methanol at 65 °C for 5 h. A mixture of boron and strontium alkoxides in the mole ratio of $Sr^{2+}/B^{3+}=1:2$ was poured into aqueous ammonia solution at 30 °C. The temperature was slowly raised up to 70 °C while being stirred. The resulting mixed powder was washed repeatedly with hot water and dried at 65 °C under reduced pressure. The average particle size of the mixed powder is ca. 550 Å.

Figure 1 shows a TG curve of the mixed powder in air. The weight loss of 16.7% up to 560 °C is attributed to the loss of ammonia, absorbed water, hydrated water, and organic residue from the parent alcohol. DTA was also performed. Two exothermic reactions were observed at 650-690 °C and 715-780 °C in the heating process. On the other hand, no peaks were detected in the cooling process. The specimens obtained in heating and cooling processes at a rate of 10 °C/min were identified by the high-temperature X-ray diffractometer using nickel filtered copper K_{α} . The recording of the powder pattern was done after keeping for 30 min at a desired temperature. The mixed powder as a raw material was amorphous, and no significant changes being observed up to 600 °C. At the top of the first sharp exothermic peak(at 670 °C), the

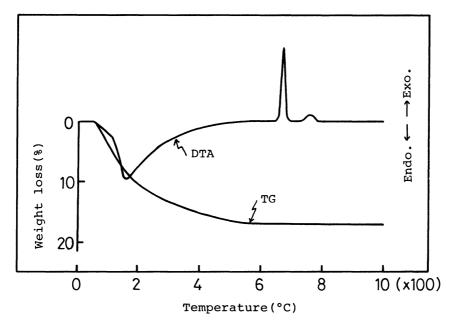


Fig. 1 TG and DTA curves of alkoxy-derived ${\rm SrB_2O_4}$. Sample weight:60 mg, Heating rate:10 °C/min.

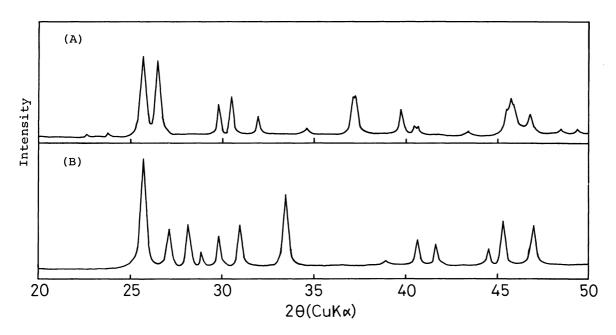


Fig. 2 X-ray diffraction patterns of metastable ${\rm SrB_2O_4(A)}$ and stable ${\rm SrB_2O_4(B)}$.

specimen showed an X-ray diffraction pattern of a hitherto undescribed new modification of SrB_2O_4 (Fig. 2(A)). After the second exothermic peak(at 790 °C), the specimen gave the pattern of the known orthorhombic modification (Fig. 2(B)). In the cooling process, the transformation of the orthorhombic- into the new modification was not observed. In view of the fact that the transformation is irreversible from DTA and X-ray analysis, the new modification must be metastable.

Figure 3 shows the infra-red spectra of metastable and stable SrB_2O_4 , which were obtained by quenching rapidly after heating for 30 min at 670 °C and 790 °C, respectively. The compounds were examined as a dispersion in potassium bromide, using the pressed disk technique. X-Ray determinations of the structures of the metaborate compounds have so far identified four types of borate ion with the overall formula $(BO_2)_n^{n-}$. These structures are a chain anion, made up of $(-BO_2-)^{-}$ units, a ring anion, made from three of the same units, a three dimensional network, in which all the boron atoms are tetrahedrally coordinated, and a double ring structure $B_5O_{10}^{5-}$, in which the two rings are joined by a tetrahedral boron atom. The four structure types exhibit

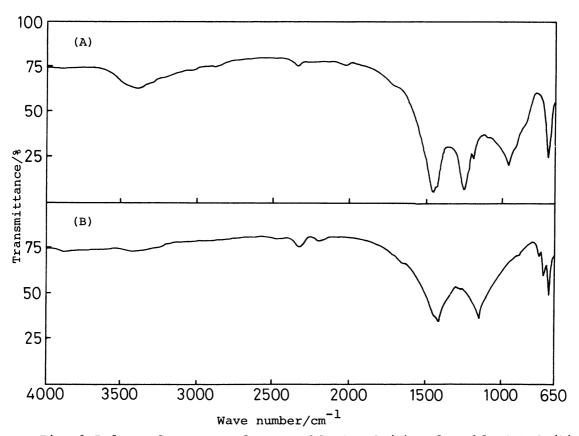


Fig. 3 Infra-red spectra of metastable $SrB_2O_4(A)$ and stable $SrB_2O_4(B)$.

characteristic infra-red spectra. It has been shown for the compound ${\rm SrB}_2{\rm O}_4$ to contain the chain anion reported by Hart and Smallwood. The spectral pattern of the stable ${\rm SrB}_2{\rm O}_4$ obtained in the present study was consistent with the reported one. On the other hand, the spectra of metastable ${\rm SrB}_2{\rm O}_4$ were very similar to those of ${\rm ZnB}_2{\rm O}_4$, although its structure has not been decided yet.

X-Ray diffraction peaks of metastable ${\rm SrB_2O_4}$ were compared with those of ${\rm ZnB_2O_4}.7)$ The scanning speed of 1/4°/min of the goniometer was selected to satisfy the accuracy of d-spacing. The observed d-values of metastable ${\rm SrB_2O_4}$ were in agreement with those of ${\rm ZnB_2O_4}$ within 0.033 Å for all peaks in 2θ =20-50°, though both compounds were disagreement with respect to relative intensities of main peaks. From the above mentioned results and the infra-red spectrum data, it can be considered that the structures of metastable ${\rm SrB_2O_4}$ and ${\rm ZnB_2O_4}$ resemble each other.

References

- 1) C. E. Weir and R. A. Schroeder, J. Res. Nat. Bur. Stand., <u>68A</u>, 465(1964).
- 2) X-Ray powder data file(ASTM card 15-779).
- 3) T. Takamori and R. Roy, J. Am. Ceram. Soc., <u>58</u>, 348(1975).
- 4) O. Yamaguchi, K. Matumoto, and K. Shimizu, Bull. Chem Soc. Jpn., <u>52</u>, 237(1979).
- 5) O. Yamaguchi, K. Yabuno, K. Takeoka, and K. Shimizu, Chem. Lett., 1979, 401.
- 6) P. B. Hart and S. E. F. Smallwood, J. Inorg. Nucl. Chem., 24, 1047(1962).
- 7) X-Ray powder data file(ASTM card 9-107).

(Received August 3, 1979)